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Problem: huge memory/CPU 
resources needed in Geant4

• These jobs in LArG4 module can get 
enormous.

• Jobs that run on EXPTgpvm01 begin to fall 
over en masse on condor local nodes.

• Seems to me we have 2GB/node, as Dennis 
has dialed it on local nodes. Can people 
please verify with top, e.g., that your job 
exceeds this and report back to me?
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LArVoxelReadOut.cxx
• Huge amount of cpu/wallclock time spent 

here for small voxels.

• There is a loop here over each tiny little step 
for each particle’s energy deposition, in 
which the (x,y,z) is queried and a new 
LArVoxel object is created or (copied? and) 
contributed to.

• Potential quick solution for now: Increase your voxelSize

services.user.LArVoxelCalculator.VoxelSizeX: 0.3 # cm x10-30 larger than default.
services.user.LArVoxelCalculator.VoxelSizeY: 0.3 # cm
services.user.LArVoxelCalculator.VoxelSizeZ: 0.3 # cm
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Track-Stacking
• User has to implement three methods.
• G4ClassificationOfNewTrack ClassifyNewTrack(const G4Track*)
– Invoked every time a new track is pushed to G4StackManager.
– Classification

• fUrgent - pushed into Urgent stack
• fWaiting - pushed into Waiting stack
• fPostpone - pushed into PostponeToNextEvent stack
• fKill - killed

• void NewStage()
– Invoked when Urgent stack becomes empty and all tracks in Waiting stack are 

transferred to Urgent stack.
– All tracks which have been transferred from Waiting stack to Urgent stack can be 

reclassified by invoking stackManager->ReClassify()
• void PrepareNewEvent()
– Invoked at the beginning of each event for resetting the classification scheme. 
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Track Stacking
This is now implemented in LArG4/LArG4.cxx using 
from flag at LArG4/largeantmodules.fcl.
lbne_largeant:

{

 module_type:            "LArG4"

 GenModuleLabel:         "generator"

 GeantCommandFile:       "LArG4/LArG4.mac"

 DumpParticleList:       false

 DumpLArVoxelList:       false

 DebugVoxelAccumulation: 0

 VisualizeEvents:        false

 PMTSensitiveVolumeName: ""

 SmartStacking: true

}

Tuesday, February 22, 2011



Track Stacking
LAr20MuonStackingAction.cxx  : public G4UserStackingAction  

LAr20MuonStackingAction::ClassifyNewTrack(const G4Track * aTrack)
{ //snippet

switch(stage)

  {

  case 0: // Stage 0 : Primary cosmic muons only

    if(aTrack->GetParentID()==0)

      { classification = fUrgent; }

...

  case N:

    TString volName(InsideTPC(aTrack));

    if(volName.Contains(geom->GetLArTPCVolumeName()) )

      { 

      classification = fUrgent;

      break;

      }

    else if (volName.Contains("unknown") )

      {

 classification = fKill;

 break;

      }

Track the primary cosmics

Everything in TPC is Urgent

Tracks in outer space killed.
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Track-Stacking

 if (! volName.Contains(geom->GetLArTPCVolumeName()) && aTrack->GetDefinition()-
>GetPDGEncoding()==11 && ((TString)aTrack->GetCreatorProcess()->GetProcessName
()).Contains("muIoni") )

      {

 classification = fKill;

 break;

}

classification = fUrgent;

//end snippet

Kill the rock ionization electrons

declare all else as urgent
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Results

• 10000 cosmic events in LBNE/LAr20 used 
to take 5-10 days, if they had survived that 
long.

• These 2 things -- voxelSize increase and 
trackStacking - made them run in 20 
minutes. 

• Half, not all, of my condor jobs die.
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Future G4 Economizing

• Explore G4’s Scoring for rare processes

• Look further into LArVoxelReadout. Can it 
be streamlined? Is there some horribly 
expensive operation currently that can be 
worke around so that voxelSize can again 
be reduced?
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